Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals

نویسندگان

  • Fei Su
  • Ping Xu
چکیده

Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genome Sequences of Two Morphologically Distinct and Thermophilic Bacillus coagulans Strains, H-1 and XZL9

Two thermophilic Bacillus coagulans strains, H-1 and XZL9, both of which were isolated from soils, have different morphological properties. Strain XZL9 but not H-1 is an efficient pentose-utilizing producer of important platform compounds, such as l-lactic acid and 2,3-butanediol. Here we announce the 2.86- and 3.43-Mb sequences of their genomes.

متن کامل

Contributory roles of two l-lactate dehydrogenases for l-lactic acid production in thermotolerant Bacillus coagulans

Thermotolerant Bacillus coagulans is considered to be a more promising producer for bio-chemicals, due to its capacity to withstand harsh conditions. Two L-lactate dehydrogenase (LDH) encoding genes (ldhL1 and ldhL2) and one D-LDH encoding gene (ldhD) were annotated from the B. coagulans DSM1 genome. Transcriptional analysis revealed that the expression of ldhL2 was undetectable while the ldhL1...

متن کامل

Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains

BACKGROUND Microbial conversion of biomass to fuels or chemicals is an attractive alternative for fossil-based fuels and chemicals. Thermophilic microorganisms have several operational advantages as a production host over mesophilic organisms, such as low cooling costs, reduced contamination risks and a process temperature matching that of commercial hydrolytic enzymes, enabling simultaneous sa...

متن کامل

Non-sterilized fermentation of high optically pure d-lactic acid by a genetically modified thermophilic Bacillus coagulans strain

BACKGROUND Optically pure D-lactic acid (≥ 99%) is an important precursor of polylactic acid. However, there are relatively few studies on D-lactic acid fermentation compared with the extensive investigation of L-lactic acid production. Most lactic acid producers are mesophilic organisms. Optically pure D-lactic acid produced at high temperature not only could reduce the costs of sterilization ...

متن کامل

Jerusalem artichoke powder: a useful material in producing high-optical-purity l-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain.

Jerusalem artichoke is a low-requirement crop, which does not interfere with food chain, and is a promising carbon source for industrial fermentation. Microbial conversion of such a renewable raw material to useful products, such as lactic acid, is an important objective in industrial biotechnology. In this study, high-optical-purity l-lactate was efficiently produced from the hydrolysates of J...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014